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Abstract: Given that a patient survives beyond time ¢, then there is a probability of (1-p) that the patient will survive
beyond time 1, (1), m, (1} is thus the time beyond which 100(1-p)%s of all patients will survive given that each
of them survive beyond time . m,(!) is a very useful and interpretable index. Being a function of time elapsed it
highlights different properties of survivorship frequently masked under 5{; 1,8 ) which may appear similar under a

number of representatives. In this paper we derive maximum likelihood estimates m1,/1) of using the log-logistic and
three-parameter generalized log-logistic regression models for censored survival data. We also develop (1-0)100%
estimates of confidence intervals for m,(1). We iliustrate our results using a numerical example.
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I, INTRODUCTION

Let The the lifetime of a patient and 0 < p < /.
PIT>m{T>t]=1-p

Then define m, (1), the 700 (1- p)th percentile

remaining time, by:
{m,(8)=(1-p)S(y

Thus we may estimate p;,, (£} as:

S(m ) =(1- p) 819

(0= F" [1-(1- p) S()]

The following possible appiications give pretty good
motivation for 77, (1) :
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a. Suppose it is known that a particular patient has a
side effect, which is fatal for an unknown population
of patients. It is also known that the effect of the
treatment wears out with time. That is, given that a
patient has survived by time 7, the patient has a higher
probability of survival beyond time? +7 " We would
like to mform patienis about the time they would
survive beyond with probabiiity of, say, 95, given
that they survive beyond, say, two years from time by
treatment, m g5(f} is precisely this time.

b. We might want to do the above for varying p.
¢. mp(f for varying pis & measure of fumre
survivability of patient.

d. Radiation treatment may cause unknown cancer or
disease.

e. Compare s, () when no side effect against 1, (1)

when there exists side effect.



f. Could be used to see if dose is oo much or
compare 1wo treatments.

hit; B), the hazards function is an important Rnction
in estimating the most prognostic index, S(t; B). Cox
[1972] defined hazards function as follows:

h(t: B = ho(t) exp(BX)

In view of the high efficiency of the B estimates in the
neighborhood of B=0 [Oaks, 1977; Kalbieisch, 1974,
ffron, 1988] the approach is useful preferred in
significant testing .

7. A GENERALIZED LOG-LOGISTIC MODEL
FOR CEMNSORED SURYIVAL DATA

Let I be the survival time for an individual and let
log (1Y be a generalized logistic random variable with
shape parameters v and 1. Then from Singh [1989] 7'
is the generalized log-logistic random variable with
shape parameters v and7}. Assume that the patients

are grouped into NV samples. For the kth sample, let
7 be the survival time for a patient and %7, beag-

dimensional vector of observed covariates from an
ingdividual
B X, =B, B Xut .t B, Xy
then the p.df of T is given by

— il
gk(f)“S[Fk@]V []'Fk(g) ] /
[tB(v )]

(1

where Bfv 1 ) is the complete beta function with
parameters ¥V >0 andn>0,t is the observed
survival time for a patient in the kth sample, and

Folt)= {1+ !t A

is the log-logistic c.dfl, with & and B's (¢ + 2)
unknown parameters. For notational simplicity let
the generalized log-logistic mode! be devoted by
GLL{v,y). Note that if v=n=1, GLL{vn} reduges
to the log-logistic model, 1t is symmetric around

log(t)=-B'X /5,

positive skewed if v> nand negative  skewed if
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v < 1, The hazard function of T is given by:
he(0=g, (D7 8§t

and S, (D=1~ Gl

Singh [1989] showed that the family of the
generalized logistic models provides many of the
different shaped hazard rates, for example, sirictly
increasing (1), constant {CJ, strictly decreasing (),
bathtub shaped and upside down bathtub shaped.

.......... LI L LiEen

Letsy, na > and py, be respectively the number of
uncensored, left censored and right censored
observations in the kth sample, and let n be the
awmber of uncensored observations in all & samples.
Then:

N
= E Mk
Py

The ilikelihood of thef, sample may then be

expressed as follows:

e ni o

Lkmﬁ g H Gﬁ’(fj) H Sk(fv) {3}
=1 i=! w=]

The likelihood L of all N samples is simply the
produst of the [, over ail samples,

Dencte the first derivative with respect to 8§, by I¥6,)
and the second derivative with respect to §; and 8; by
D8,.8,). The MLE of the parameters 3, B, (»=10, {,
2,00V andm are oblained by solving D(8) = 0.

MNote that these eqguations are nonlinear in &
(8, B.v.M) and numerical iterative procedures such

as the Newton-Raphson method should be used to
fine the MLE of the parameters. In addition,
computational difficulty occurs in evaluating Di(v)
and (1) because of the flatness of the log-likelihood
{over v and 1. An alternative is fo consider the
submodels GLL{v,1} and GLL{1.n). Note that the
shape parameter still rteteins the property of
measuring the structure of heavy tail. For the model
GLL{v,11,v < 1 reflects the heavy tail. For GLL{1.m)
also reflects such a tail.



3. MAXIMUM LIKELIHOOD £STIMATE OF
m (1) FROM THE GENERALIZED LOG-

LOGISTIC MODEL MODEL, GLL(V,1)

Consider the generalized log-logistic model describe
in section 2 for v andn = 1.

Ge()=[F.(0 ] O]

g ()= %‘L [Fu t-ro1

The log-likelihood is given by:
N

I8 ltx )=nlog(8v )+ Y
k=1

Mii;

Z(‘J log Frof ;) +log{l-Folt, ) )+

(6}

H2E i3k

2.V log Fut; )+ 3 log{1-[Fi(1,)]']
where QZ(S,E,V).

The MLE of the parameters & . Br ,andv  are
obtained by solving the eguations:
D(&)=0,D(B )=0,and D(v)=0 1If
S‘, 5, (r=101..,q), and ¥ are the maximum

likelihood estimates, then the survival function for
the GLL{v,1} model can be estimated as:

S:0=1-[F,0 ] %)
and the hazard function is estimated as:

. ~ A ] A
b =Gy [BOT ROl

8.0

and MLE ofm,(t) the 100{I-pjth percentile
remaining time, for an individual is given by:

Frp()=exp(-B' X, /8 ) prl-w) ' ©)

where:
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w=[1-(1-p) &0 "

Now we derive the [00{ ] -1 )% confidence interval
for m (1) of the GLL (v,1).

The method of interval estimation we are using
involves the asymptotic disuribution of the MLE of 8.
If 8 is interior to the parameter space, and since /(8)
is twice differentiable, it can be shown that the
asymptotic distribution of@; is multivariate normal
with mean § and the variance-covariance matrix
which is the inverse of Fisher information matrix of

second derivations evaluated at9 =8, Considering
the GLL{v,!) model and using the derivatives (1-8)
given in Appendix A, the asympiotic variance
of i1, (¢) approximately is given by:

Var (i) = (,(® ) [ 42 var (8 )+ 3 B
var (B )+ C var (V )+ 4 % B, Cov(g,gf)
+AC Cov(8V )+ C LB Cov(f V)

+22 BB, Cov(B,.B )] (10)
where:
4= tog (i, )
25 ?
w%@iog(@pm)
=2 tog( s, )
oy elme

Hence the 100{1-0)% asymptotic confidence interval
for the remaining survival time, p( ¢}, is defined

as;

() & ZosfVar (i (0

4. MAXIMUM LIKELIHOOD ESTIMATE OF
m,(1) FROM THE GENERALIZED LOG-

LOGISTIC MOBEL, GLL{,1 }

(11}

Consider the generalized log-logistic model for v =1
and n. The cdfand pdf of T respectively reduce 1o

Gk(’f):j'[l_f:k{f)]q (12}



gk(v:%‘—l[mﬂ[z-mw (13)

The log likelihood function is given by:

I8 )=nlog(dn )+ Y[
k=1

ihig

Z[lOng(zf)+ﬂ log(1- Fult,)i-loglt)]

¥ log [1-(1-Fi(t,) )]

I

(14)

1k

+y nlog(l- Fult.)
v f

where@ =(8&,B.n/) The first and second
derivatives with respect to § can easily be obtained.

The MLE off is obtained by solving the equations:

D06 )=0, D(B,)=0and D(n }=0. Then the

survival function, hazard function and the remaining

survival time are respectively given
by §, ()= [1- F (0 ]"

i-w %
Arpth=exp B X,/ 5){—;} (15)

where

ﬁﬂi:(j'}ﬂ.§kﬂ)

Now, the J 00(7 -0 )94 asymptotic
Confidence Interval for p,(¢) using asymptotic
distribution theory. The derivations are not difficulty

to derive. Note that @ ={ 3, 6 ,1i ) is the maximum
likelihood estimate of 8, The asymptotic distribution

we  derive

of §=(05,0,1})is approximately multivariate
normal with mean £ and the variance-covariance
matrix, the inverse of Fishers information matrix of

second derivatives evaluated at § =§.

Considering GLL{1,1} ) model and using (1-8) given
Appendix B, the asymptotic variance of 7, (1)

approximately 1s as follows:
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Var (i (6) = (1,0 ) [ 42 var (8 )+
T B var (B )+ var () +
AT B, Cov(8.§ ) +AC Cov(8.1)+

C ZB: COV (é!vﬁ)
v{ (16)

+ L LB B, Cov(B,.8,)]

where

9 log (i, (1)

)
Az""“":i - BT .
Y 0g (7,(t)) . B o5

C= 5108 (1)

Hence the [00({-aj% asymptotic confidence interval
form, () is given by

ﬁgp(t) A A/ Var (?:;7_;: (y)

5. APPLICATION

{7

Yogler et. al. [1992] undertook a randomized clinical
trial to compare the therapeutic effectiveness of
idarubicin {IDR} fo daunorubicin (DNR). Both
groups were given in combination with cytarabine
{CA) in acute myelogenous leukemic (AML) patients.
There were 105 patients on the IDR am and 13
patients on the DNR arm. The randomization plan
was generated prospectively and was restricted to
incorporate stratification parameters for age (15 to
50, 51 to 60, and >60 years), and a history of an
antecedent hematologic disorder {myelodysplastic
syndrome with transformation to AML).

The groups were reasonably balanced, with no
significant differences with regard to age, sex, FAB
classification, antecedeni hematologic disorder,
performance status, presence of bleeding or infection
at diagnosis, or median WBC count or hemoglobin
congentration. The median platelet count was The
iikelihood of an earlier death increased with
increasing age in both group {(P<0.0004). The WEC
counts at diagnosis were compared with regard 1o
treatment arms. There were no significant differences
between the treatment arms in patients with Tespect 1o
WBC [Vogler ef. al., 1992].

Both groups were combined. 183 patients were



available for 100(1-p)th percentile remaining survival
time. Of the 183 patients, 13 patients were censored.
Log (Sury, Ons-Plat, Age and treatment were
considered for GLL{v,7] } where we fixed v=1 and

T =1. The estimates for the regression coefficients

for Log {Sur}, Ons-Plat, Age and treatment are,
respectively, 1.9447, 0.0079, 0.0382 and 0.9632,

The asymptotic estimate of variance-covariance
matrix for the regression cosfficient estimates is as
follows:

Log (Sur) Omns-Plat  Age Treat

Log (Sur) .154657 000303 001805 .035484

Omns-Plat 000023 -.000006 000553
Age 000512 .0061604
Treat 431130

95% asympiotic confidence intervals for 100 {1-p)th
percentile remaining survival times for patients in
Treatments A and B beyond 12 vears are given by
Figures | and 2.
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Figure 1: Treatment A.

From Figures 1 and 2, Treatment B gives narrower
95% confidence interval than Treatment A. Using
the estimated regression coefficients and the
asymptotic estimated variance-covariance matrix the
100(1-a)% asymptotic confidence interval for

mp {4 could easily be estimated. The authors are
presently cstimating v and 1} for the general case
GLL(V.T}).
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Figure 2: Treatment B.
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7. APPENDIX A

The following partial derivatives are used in the
derivation of asymptotic variance of 1, {7} using

GLL(V ,]) :
Mote that
w'=1-(1-p) 5,00 L
a W_{_f-p)[} S [1-F (] log ()
3 - Y
oo, e
“'"ZwWﬂX,“'“:W )
3 3 k 3% (3}
o Wﬁ(f-p)[f-&(w log( F, ()
R v v
W loe () @
v
Mote that

10g(rﬁp(ﬁ)={ —;[_3_')_(;{+log(I_—W;V—H/EiT

(3}
Thusg
o )
— log(m, (1) = (®
&
d
-1 ; + —W 1D
[ 08 (i (1) 3 o }
d
fé’"éf log (/,(th =
i d o
- ¥, .+ - W /o
{h 7 95, } M
o ¢
1o S S
Sl (i, ()= T ®
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8. APPENDIX B

The following partial derivatives are used in the

derivation of  the  asymptotic  variance
of 172, (1) using GLL(IM ).
Mote that
Wh=(1-p}§(U (1
W =W g )logdt @

W= 0 X
a ﬁj Fﬁr L4 (3)

O =Yg ud } )

of M [ I-F0

Mote that

log (i, ()= [@i,ﬁrlog(—{gﬁ ]/5

(5)

Thaus,

2 tot10)-

) .

-1 7 + —W /G
{Og(m;,(f)) W) 58 } (6)
S —log (i, ()=
{ o WJ/@ %)

W(] W) 38

d i J

—log (i, (t -»-~—————--~—W 8

o og (i, ()= g -w an (8)





